Company news

Home > News > Content
Plastic Welding
Oct 11, 2017

Hot Gas welding

     Hot gas welding, also known as hot air welding, is a plastic welding technique which is analogous to gas welding metals, though the specific techniques are different. A specially designed heat gun, called a hot air welder, produces a jet of hot air that softens both the parts to be joined and a plastic filler rod, all of which must be of the same or a very similar plastic. Welding PVC to acrylic is an exception to this rule. Hot air/gas welding is a common fabrication technique for manufacturing smaller items such as chemical tanks, water tanks, heat exchangers, and plumbing fittings. In the case of webs and films a filler rod may not be used. 

      Two sheets of plastic are heated via a hot gas (or a heating element) and then rolled together. This is a quick welding process and can be performed continuously. Freehand welding With freehand welding, the jet of hot air from the welder is played on the weld area and the tip of the weld rod at the same time. As the rod softens, it is pushed into the joint and fuses to the parts. This process is slower than most others, but it can be used in almost any situation. Speed tip welding With speed welding, the plastic welder, similar to a soldering iron in appearance and wattage, is fitted with a feed tube for the plastic weld rod. The speed tip heats the rod and the substrate, while at the same time it presses the molten weld rod into position. A bead of softened plastic is laid into the joint, and the parts and weld rod fuse. With some types of plastic such as polypropylene, the melted welding rod must be "mixed" with the semi-melted base material being fabricated or repaired. 

       These welding techniques have been perfected over time and have been utilised for over 50 years by professional plastic fabricators and repairers internationally. Speed tip welding method is a much faster welding technique and with practice can be used in tight corners. Extrusion welding Extrusion welding allows the application of bigger welds in a single weld pass. It is the preferred technique for joining material over 6 mm thick. Welding rod is drawn into a miniature hand held plastic extruder, plasticized, and forced out of the extruder against the parts being joined, which are softened with a jet of hot air to allow bonding to take place. 

Contact welding

        This is the same as spot welding except that heat is supplied with conduction of the pincher tips instead of electrical conduction. Two plastic parts are brought together where heated tips pinch them, melting and joining the parts in the process. [edit] Hot plate welding Related to contact welding, this technique is used to weld larger parts, or parts that have a complex weld joint geometry. The two parts to be welded are placed in the tooling attached to the two opposing platens of a press. A hot plate, with a shape that matches the weld joint geometry of the parts to be welded, is moved in position between the two parts. The two opposing platens move the parts into contact with the hot plate until the heat softens the interfaces to the melting point of the plastic. When this condition is achieved the hot plate is removed, and the parts are pressed together and held until the weld joint cools and re-solidifies to create a permanent bond. The most common form of this welding is butt heat fusion welding which welds two circular tubes end to end. 

High frequency welding

         Certain plastics with chemical dipoles, such as PVC, polyamides (PA) and acetates can be heated with high frequency electromagnetic waves. High frequency welding uses this property to soften the plastics for joining. The heating can be localized, and the process can be continuous. Also known as Dielectric Sealing, R.F. (Radio Frequency) Heat Sealing. In a ferromagnetic work piece, plastics can be induction-welded by formulating them with metallic or ferromagnetic compounds, called susceptors. These susceptors absorb electromagnetic energy from an induction coil, become hot, and lose their heat energy to the surrounding material by thermal conduction. Radio frequency welding is a very mature technology that has been around since the 1940s. Two pieces of material are placed on a table press that applies pressure to both surface areas. Dies are used to direct the welding process. When the press comes together, high frequency waves (usually 27.12 MHz) are passed through the small area between the die and the table where the weld takes place. This high frequency (radio frequency) field causes the molecules in certain materials to move and get hot, and the combination of this heat under pressure causes the weld to take the shape of the die. RF welding is fast. This type of welding is used to connect polymer films used in a variety of industries where a strong consistent leak-proof seal is required. In the fabrics industry, RF is most often used to weld PVC and polyurethane (PU) coated fabrics. This is a very consistent method of welding. The most common materials used in RF welding are PVC and polyurethane. It is also possible to weld other polymers such as nylon, PET, EVA and some ABS plastics. Injection welding This section requires expansion. 

Ultrasonic welding

        Main article: Ultrasonic welding In ultrasonic welding, high frequency (15 kHz to 40 kHz) low amplitude vibration is used to create heat by way of friction between the materials to be joined. The interface of the two parts is specially designed to concentrate the energy for the maximum weld strength. Ultrasonic can be used on almost all plastic material. It is the fastest heat sealing technology available. 

Friction welding

        In friction welding, the two parts to be assembled are rubbed together at a lower frequency (typically 100-300 Hz) and higher amplitude (typically 1 to 2 mm (0.039 to 0.079 in)) than ultrasonic welding. The friction caused by the motion combined with the clamping pressure between the two parts creates the heat which begins to melt the contact areas between the two parts. At this point, the plasticized materials begin to form layers that intertwine with one another, which therefore results in a strong weld. At the completion of the vibration motion, the parts remain held together until the weld joint cools and the melted plastic re-solidifies. The friction movement can be linear or orbital, and the joint design of the two parts has to allow this movement. Spin welding Main article: Spin welding Spin welding is another form of frictional welding. With this process, one part is held stationary, while the other one is rotated at high velocity. The rotating part is then pressed against the fixed part with significant force. 

Laser welding

       This technique requires one part to be transmissive to a laser beam and either the other part absorptive or a coating at the interface to be absorptive to the beam. The two parts are put under pressure while the laser beam moves along the joining line. The beam passes through the first part and is absorbed by the other one or the coating to generate enough heat to soften the interface creating a permanent weld. Semiconductor diode lasers are typically used in plastic welding. Wavelengths in the range of 808 nm to 980 nm can be used to join various plastic material combinations. Power levels from less than 1W to 100W are needed depending on the materials, thickness and desired process speed. [1] Diode laser systems have the following advantages in joining of plastic materials: Cleaner than adhesive bonding No micro-nozzles to get clogged No liquid or fumes to affect surface finish No consumables Higher throughput Can access work-piece in challenging geometry High level of process control Requirements for high strength joints include: Adequate transmission through upper layer Absorption by lower layer Material compatibility – wetting Good joint design – clamping pressure, joint area Lower power density Materials that can be joined include: Polypropylene Polycarbonate Acrylic Nylon ABS Specific applications include sealing / welding / joining of: catheter bags, medical containers, automobile remote control keys, heart pacemaker casings, syringe tamper evident joints, headlight or tail-light assemblies, pump housings, and cellular phone parts.